

AS Level Mathematics B (MEI)

H630/02 Pure Mathematics and Statistics

Question Set 3

1 Solve the equation $4x^{-\frac{1}{2}} = 7$, giving your answer as a fraction in its lowest terms.

$$\frac{4}{4}$$
 = $4 \rightarrow \frac{4}{7}$ = $9 \times \frac{10}{4}$ = $9 \times \frac{10}{4}$

[3]

[2]

2 Fig. 2 shows a triangle with one angle of 117° given. The lengths are given in centimetres.

- Calculate the area of the triangle, giving your answer correct to 3 significant figures.
- 3 Without using a calculator, prove that $3\sqrt{2} > 2\sqrt{3}$. [3]

$$352 = \sqrt{4 \times 2} = 518$$
 $518 > 572$
 $213 = \sqrt{4 \times 3} = 572$ $\therefore 352 > 253$

- 4 The equation of a circle is $x^2 + y^2 + 8x - 6y - 39 = 0$. $(y + y)^2 + (y - 3)^2 = 64$ Find the coordinates of the centre of the circle. (-4y)
 - (a) [2]
 - **(b)** [1]
- Find $\int x^3 \left(15x + \frac{11}{\sqrt[3]{x}}\right) dx$. $\int |5x^4 + 1| x^{\frac{8}{3}} dx = 3x^5 + 3x^{\frac{11}{3}} + C$ [5]
 - [3]

t	0	1	2	3	4
V	8500	6970	5720	4690	3840
$\log_{10}V$	3.93	3.84	3.76	3.67	3.58

Fig. 6.1

Adam uses a spreadsheet to plot the points $(t, \log_{10} V)$ shown in Fig. 6.1, and then generates a line of best fit for these points. The line passes through the points (0, 3.93) and (4, 3.58). A copy of his graph is shown in Fig. 6.2.

Graph of $\log_{10} V$ against t

Fig. 6.2

Find an expression for
$$\log_{10} V$$
 in terms of t .

Concate $n_t = 3.98 - 3.93 = -3$

When $t = 0$, $\log V = 3.93$ (y-invercept)

 $\log V = -\frac{7}{80} + 3.93$

(b) Find a model for V in the form V = A × b^t, where A and b are constants to be determined. Give the values of A and b correct to 2 significant figures.
[3]

In 2017 Adam's car was valued at £3150.

- Determine whether the model is a good fit for this data.

 (1)

 At t = 5 \ v = 3108 \frac{1}{2108 \neq 3150} \text{ not a good fit}

 A company called Webuyoldcars pays £500 for any second hand car. Adam decides that he will sell his car to this company when the annual valuation of his car is less than £500.
- (d) According to the model, after how many years will Adam sell his car to Webuyoldcars? [3]

In this question you must show detailed reasoning.

The equation of a curve is $y = \frac{x^2}{4} + \frac{2}{x} + 1$. A tangent and a normal to the curve are drawn at the point where x = 2.

Calculate the area bounded by the tangent, the normal and the x-axis.

[10]

at the point
$$x = 2$$

$$y = \frac{1}{2} + \frac{2}{2} + 1 = 3$$

②
$$\frac{dy}{dx} = \frac{x}{2} - \frac{2}{x^2}$$
, when $x = 2$, $\frac{dy}{dx} = \frac{2}{2} - \frac{2}{2^2} = \frac{1 - \frac{1}{2}}{2} = \frac{1}{2}$

$$y = -2x + e$$

$$\Rightarrow 3 = -2(2) + C$$

$$3 = -4 + e$$

(a) when
$$y = 0 \ x = ?$$

(b) $0 = -2x + 1$

ENLARGED DIAGRAM

area =
$$\frac{1}{2} \left(\frac{1}{2} - 2 \right) \left(3 \right)$$

= $\frac{9}{4} = \frac{2.25}{}$